The World Today

The World Today
Earth in 2013

Sunday, March 3, 2013

Moonlab, chapter 1, outline

I've started what might be my next book (well, alternate history at any rate). It's called Moonlab, and covers Project Moonlab during its run of 1974-1981. NASA goes with continuing the moon missions in the 1970s instead of the Earth orbital infrastructure path that it turned into a thirty year detour of the space program. I better not get started on the problems with the so-called "reusable" (rebuildable would be a more accurate description) space shuttle program, or I'll be ranting for a while. Anyways, here's the first chapter of the outline. The finished work will require a rewrite or three, and there is no projection on when it'll be finished.
I) Prelude to Moonlab
            The road to Moonlab leads back to 1961. Shortly after Alan Shepard’s fifteen minute flight, President John Kennedy announced that NASA would land a man on the moon and return him to Earth by the end of the decade. Whether or not Kennedy had 1969 or 1970 in mind as the end of the decade may never be known. What is known was that everyone in NASA thought the President was quite mad. America had no even reached orbit, and they were supposed to be the Soviet Union to the moon?
            The challenges faced to reach the moon ranged from laughable to serious. In the beginning, NASA doctors had serious worries about whether or not an astronaut could even survive weightlessness for the duration of the voyage. Engineers questioned whether or not rendezvous was even possible. More serious was the problem in extravehicular activity. EVAs during the Gemini missions put several astronauts at risk. It was not discovered that the real problem was in the initial training for spacewalking until Buzz Aldwin threw a space capsule into a pool and dove in after it. Though not weightless, moving with the buoyancy of a suit in water mimics moving in space. So many technical obstacles lay ahead that whole books could be written about every aspect of Projects Mercury and Gemini.
            The biggest stumbling block on the road to the moon came in the form of Apollo I. A fire in the oxygen-rich atmosphere of a low quality capsule all but gutted it, killing three astronauts in the process. The fire forced NASA and North American-Rockwell engineers to redesign Apollo from the ground up, delaying the first successful launch by more than eighteen months. During this period, initial plans for Moonlab were being drawn up, and would require a capsule that could stay in orbit in stand-by mode for months on end. Fuel cells small enough to blast into space lacked the capacity, forcing NASA to go with solar panels for Block III Apollo. When launched in October 1968, Apollo VII worked like a dream. Apollo VIII was originally poised to run the first tests of the Lunar Excursion Module in Earth orbit. It was an essential step in the process for if the LEM did not maneuver as advertised then the 1969/70 deadline would not be met.
            Months prior to the launch, the CIA discovered a massive N1 sitting on a Soviet launch pad undergoing preparation for launch. The N1 was the Soviet equivalent of the Saturn V, with the express purpose of placing a Soyuz spacecraft into lunar orbit. It was feared that the Soviets were preparing for their first moonshot. It was a founded fear, for that was precisely what the Soviets were planning. Little did the CIA or NASA know that the N1 was plagued with technical difficulties, and the first circumnavigation of the moon by Cosmonauts did not occur until June 1969, six months after Apollo VIII returned from its ten orbits of Luna, and nearly a month after Apollo X returned from testing the LEM in lunar orbit.
            When it became clear to Soviet leaders that the first man on the moon would not be a cosmonaut, plans went into effect to tromp the impending American landing. One of the Soviet back-up plans came in the form of a sample return probe. While it would only return a few grams of regolith (compared to the eventual American return of 439 kg of lunar material during the Apollo Program), Soviet leaders hoped it would also offer a propaganda coup, showing that they brought back lunar samples at a fraction of the price of the Americans. Luna 15 touched down two days before Apollo XI, and despite some technical difficulties, it successfully launched its sample return, which beat the Americans back to Earth by mere hours. Unfortunately, after re-entry, the parachute on the return capsule failed to deploy properly, causing it to land at greater speed than designed. While the sample survived the crash, it was too contaminated to be of much use. With their own effort to one-up the Americans over, Premier Brezhnev was forced to call President Nixon and congratulate the United States on its amazing achievement. It was by no means admitting defeat.
            The Soviets launched three more sample return missions, all landing successfully, but most people outside of the Soviet Bloc did not notice their achievement, or if they did, they simply did not care. Probes bringing back grams of dust did not excite the imagination the same way as seeing an astronaut walking across the lunar surface. Though they were no clearly behind the American space effort, the Soviets pushed forward with their own manned landing, first with 1971 as the target, then 1972 and finally settling for 1974. The first cosmonaut, Alexi Leonov, did not step foot upon the moon until the last of the Apollo missions departed for Earth, and only two months before the first manned Moonlab mission arrived.
            If not for the continued Soviet push for the moon, it is entirely possible that the moon program would have been canceled after the final Apollo mission. In 1970, U.S. President Richard Nixon had three options placed in front of him by NASA. 1) Development of Earth orbital infrastructure. 2) Continued exploration of the moon. 3) Mission to Mars. The third option was considered, and with elements of NASA and the aerospace industry continuing to push for the development of Nova, it might have worked. Earth orbit would have been the cheapest option; even with the projected development cost of a “reusable” space shuttle, it would still be 20% less than Moonlab. Nixon chose the second option as the image of the Soviet Union getting a toehold on the moon while NASA was puttering around in Earth orbit worried him. It would have been a public-relations disaster.
            One of the first orders of business with Project Moonlab was the development of a new booster, which began years before the first Moonlab budget was approved by Congress. The original LEM proved to be one of the most reliable vehicles in NASA’s garage, but Moonlab required for at least three astronauts to be on the moon, as well as an ability to lift at least a hundred kilograms of lunar rocks and dust back into orbit. The Nova clique pressed hard in 1968 for their monster rocket to be reconsidered. It was originally designed as part of the Direct Ascent approach to landing on the moon.
            The Saturn V was still a new booster, and before its unshakable launch record was established, engineers were looking for ways to improve its lift capacity. For a second generation LEM, they expanded the third stage of the Saturn V for 50% greater volume. This required modification of the first and second stages, mostly in the form of fuel capacity. The Saturn Vb stood ten meters taller than its original counterpart, and would carry the newer, twenty tonne Lunar Excursion Module. Without the Apollo Command/Service Module, the capacity extended to fifty tonnes. The theoretical lifting capacity of the Saturn Vb was much greater than fifty tonnes, but NASA engineers decided to mark that as the limit of the Moonlab Habitat Module and the Supply Modules.
            The ultimate decision lay in the funding. With the initial designs for Project Moonlab happened before Congress approved the funding in 1971. The Saturn Vb would cost far less to develop than Nova, which was looking more and more like a bottomless pit. The Nova booster would not be scrapped for its capacity would be ideal for a Mars mission. Engineers working on the Saturn family of boosters often joked about the delays and cost overruns of Nova; saying that man would already be on Mars by the time that monster was ready for its first flight.
            One of the easiest engineering aspects of Moonlab was the Moonlab Habitat Module. Unlike the Lunar Excursion Modules, Moonlab would never have need to lift-off from the surface of the moon. It would be making a one-way voyage. The absence of an ascent stage opened up more room in the module for supplies and living space. The HM was divided into four sections. The bottom most section contained the descent engine and other equipment used only for landing. After a decade of unmanned probes and the failures that followed them, engineers knew exactly what not to do when they designed the HM’s automated landing system. Initially only one HM was planned, but being the conservative society it is, NASA ordered two more as back up should the first crash.
            The second level contained the habitat’s life support equipment. Mass restrictions prohibited six months’ worth of water and oxygen from arriving with the HM. Instead, half of the Moonlab missions would be unmanned supply ships, similar in design to Moonlab itself, albeit scaled down to 70% the size of the HM. The Supply Modules only needed to carry the goods and not support the lives of three astronauts for extended periods of time, although they could serve as emergency shelters. In fact the first SM was equipped with a lead-lined compartment in the event of solar flares or other radiation events. Moonlab II would continue serving this function until the arrival of the inflatable habitat.
            The third level of Moonlab housed experiments and other scientific equipment. It was in effect the lab within Moonlab. Workspace was limited to a four meter radius. The workspace proved to be so limited, that addition laboratories, each the size of a small walk-in closet, were included in future supply missions. Unlike those micro-labs, Moonlab itself came with an independent airlock, allowing access to the surface without having to depressurize the whole HM for each EVA. The SM does not have this luxury. Once the inflatable shelter was constructed on the moon, astronauts would begin transferring the experiments to a much larger venue.
            The upper most section of Moonlab would be the astronauts’ home away from home for at least six months. Its volume was only half that of the lab, and astronauts would be allocated a small locker for personal affects, as well as what was little more than a hammock. Bathroom facilities would be minimal as a need to conserve water eliminated any possibility of long showers. The astronauts would be the new frontiersmen, roughing it in the lunar wilderness. The biggest challenge to the psychology of the three man crew would come during the fourteen day long lunar nights, when astronauts would be confined to its warmth. Moonlab also featured an early attempt at a partially closed loop in its water supply. Water from cleaning would be ran through filters and purified. The process of converting urine into water was a little more complicated, and despite its effectiveness, the astronauts were reluctant to consume the recycled water. Much of it went to watering the plants in the laboratory.
            The inflatable habitat was first envisioned as an emergency shelter. Before its arrival, a large, industrial rover named the Moondozer would arrive on a supply run. It could either be tele-operated or an astronaut could take over manually on the surface. Its function was solely to excavate a trench long enough and wide enough for the “balloon” to lie down in, and then to bury it beneath a layer of regolith, affording it greater protection against radiation. Afterwards, it would remain on the surface until further need of its services arose. Seeing as the Moondozer could not even reach 1 KPH, it was all but useless in exploring the moon.
            Much of the hardware for Moonlab would be new by 1974, though the means of arrival was well proven by then. Instead of developing a new spacecraft, Apollo would be used to ferry the astronauts and samples between Earth and Luna. The Apollo/Moonlab CM was of the Block III design, equipped with solar panels and batteries. With missions of at least six months, conventional fuel cells would be too heavy to last the duration. For the Apollo missions, the Block II CM, with its forty day capacity, was more than enough for a two-week mission. Even on stand-by mode, the Block II would run out of power before the astronauts returned to the surface.
            Engineers argued over whether or not such a CM would last six months in lunar orbit unoccupied. The Soviets proved the use of solar power with their Soyuz missions, but even those lasted less than a month, and always with a crew. Before solar powered Apollo was allowed to fly to the moon, NASA planners set up two unmanned missions. Apollo XVIII began its six month, unmanned mission on January 3, 1973. Once placed in orbit, operators on the ground powered down the capsule to stand-by mode and waited. On June 17, Apollo XIX docked with the unmanned craft and powered it back up. Aside from the higher-than-planned temperature (Block III was designed to maintain a twenty degree C climate with periodic heating and radiating) of thirty-three degrees, all systems we go. The Apollo XIX crew returned to Earth in Apollo XVIII, leaving their own spacecraft in orbit for a year-long unmanned mission. It would return to Earth by remote control four months before the first manned Moonlab mission flew.
            The Moonlab HM was designed for a minimum of five years’ worth of service. As with the long duration Apollo, standard fuel cells would be insufficient to power Moonlab. The best available option in 1968 was known as the radioisotope thermal generator. The RTG worked by converting heat given off by radioactive decay into electrical power. Equipment left behind on the moon by Apollo, as well as deep space probes, were all powered by these small nuclear sources. When it was leaked to the press that Moonlab would run on a scaled-up version of the same generators, NASA was struck by an anti-nuclear backlash from the public.
            A vocal minority expressed some outrage in NASA dumping radioactive material on another world. Never mind the fact that natural occurring radiation in space far outstripped anything humanity could ever produce, the word nuclear brought out the small, but ever growing environmentalist movement. A Congressional investigation into the Moonlab design brought up the question why the HM did not use solar power. After all, it would work find for the orbiting CM. One key point that was lost on the investigators is that anything in orbit of the moon would not be trapped in a fourteen-day long night cycle. Apollo could run its batteries in the shade, and recharge once back in the sun.
            Moonlab did not have that option, unless it was to land at the North or South Pole. Even then, solar arrays would need to be constructed on the peaks of eternal sunlight. A fine idea for a city, but useless for something as small as Moonlab. Attempts to install solar panels on Moonlab itself would delay the project by months perhaps even by more than a year should the redesign prove significant. Had the environmentalist the size and political clout they held in the 21st Century back in 1971, then it is entirely possible the Moonlab budget would have failed to pass. With the Red Menace still in the air, Congress approved the budget that opened the way for the first Moonlab missions. NASA Public Relations assured the public that research into solar power and even higher capacity batteries would progress, and future Habitat Modules would incorporate any such development. The failed to sail whether any breakthroughs would occur before then.
            Unlike Apollo, Moonlab would call for all three astronauts to venture to the surface. To beat the Soviets to the moon, NASA settled for a smaller, two-man Lunar Excursion Module. A second generation LEM underwent testing between 1972 and 1974. Two of the orbital tests were unmanned, testing not only the maneuvering of the new LEM, but also many systems on the Block III Apollo already in orbit. A third, manned test occurred on December 17, 1973, using the Saturn Vb as well as an older model Apollo. With identical docking mechanisms, the new LEM could be used with either Block II or III. Fewer tests were ran on the Moonlab LEM, since they used much of the same hardware as the Apollo LEMs, with the major difference being a more voluminous interior as well as more powerful descent and ascent engines.
            Project Moonlab called for the LEM to carry three astronauts, as well as at least 200 kg of sample returns. Grumman’s design team rated the LEM for 250 kg, but NASA planners decided to not allow the samples to exceed 200 kg, giving the lander a wide safety of margin when it returned to orbit. Development costs of the LEM and C/SM for Moonlab proved to be one of the few good deals of the project. With most of the transportation hardware R&D covered by past projects, Project Moonlab focused its resources on the new instead of wasting money on the tried and true. The Chinese space program of the 21st Century followed a similar pattern. Thanks to what was learned in the 1960s at American and Soviet cost, China could leap forward to its Shenzhou spacecraft (itself a copy of the venerable workhorse known as Soyuz) without having to pour billions of Yuan into learning if its Taikonauts could even survive periods of weightlessness.
            One of the tried and true tools of Apollo was abandoned in favor of a newer model. The original lunar rover fulfilled its role as a short-range transport very well, but Moonlab mission durations spanned at least fifty times the length of stay of the Apollo landings. Everything within walking distance of the landing site would be explored long before the clock ticked down to zero. A new lunar exploration vehicle, named the moon buggy by the astronauts that operated it, could operate across great distances of the lunar surface, with individual drives of over two hundred kilometers. With solar power driving it, what really limited the moon buggy’s range was the length of the lunar day.
            Travelling at ten kilometers an hour, such long drives would literally last for days. Instead of requiring the astronauts to remain exposed on the surface, the moon buggy would have a large pressurized cabin that the crew could call home. If Moonlab were a camper, then the moon buggy would be a tent. Facilities were primitive. Only one bunk was placed in the vehicle, forcing the astronauts to rotate their rest periods. One would drive while the other slept. The interior volume of seven cubic meters, while greater than the Apollo CM only gave the astronauts just enough room to get out of the driver’s seat and go to bed. While the moon buggy was designed for ‘shirt sleeve operations’, its cramped interior made it impractical to strip completely out of the suit.
            Behind the pressurized cabin, a second, open compartment for equipment, experiments and sample collection. Looking upon the moon buggy in profile, one is reminded of a full-sized van pulling a small trailer. The similarities are only superficial, as the moon buggy could barely operate in Earth’s gravity. Technicians preparing the Moonlab II flight faced a stiff challenge just getting the buggy up the ramp and secured into the first of several automated supply missions.
            Moonlab’s greatest difference compared to previous projects is the inclusion of non-pilots into the crews. The astronaut corps came from a pool of test pilots, and all had military backgrounds. There was only so much a military man could do on the moon. Criticism towards the initial selection of Moonlab crews included the lack of scientists on what was supposed to be a scientific mission. True, the astronauts could be directed by Earth-based laboratories, but if NASA planned to just have remote-controlled astronauts in Moonlab, then they might as well do away with the human aspect and convert the project to full automation. Robotic probes were far cheaper and easier to support in the hostile lunar environment.
            Instead of sending the crews through the years it would require to gain a basic degree in geology, in 1966, NASA decided to turn scientists into astronauts. The Science Corps, as the program was unofficially named, selected nine geologists and three astronomers for Project Moonlab. The inclusion of astronomers was questioned by Congressional oversight in that why should a project dedicated to the moon need scientists who look up for a living? It took some explaining to convey the idea that the airless moon made an ideal location for telescopes and other astronomical equipment.
            Much of the Science Corps training involved learning how to operate the LEM and moon buggy. For Project Apollo, the scientists were trained as LEM pilots, causing them to fill two mission roles. No scientists flew on the Apollo missions, though a number were on standby in the event of Moonlab’s potential cancellation. The first of the Moonlab geologists, Harrison Schmidt, served as Apollo XVII’s backup LEM pilot. His inclusion in the roster continued even after Moonlab’s budget was approved in 1970, though the rest of the Science Corps were permanently transferred.
             After years of training before the first Moonlab mission, the concept underwent reevaluation by auditors. The cost of turning a scientist into astronauts, both in money and time, turned out to be greater than sending an individual astronaut by to college to earn a degree in Earth Science. It was not the first cost overrun of the program, nor would it be the last. Even before Moonlab itself was launched, the project spent over three billion dollars. For the duration of Project Moonlab, the public would continue to wonder if knowledge was gained at too high of a price.

No comments:

Post a Comment